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bstract

Nanocrystalline TiO2 particles were precipitated from the ethanol solution of titanium isopropoxide (Ti(O–iPr)4) and H2O2 by refluxing at 80 ◦C
or 48 h. The obtained particles were filtered and dried at 100 ◦C for 12 h. The dried powder itself, the sample with heating at 400 ◦C, and the sample
ith ultrasonically treating were prepared to investigate the effects of post treatments on materials characteristics and electrochemical properties
f nanocrystalline TiO2. The X-ray diffraction patterns of all of the samples were fitted well to the anatase phase. The field emission-TEM image
f as-prepared sample shows a uniform spherical morphology with 5 nm particle size and the sample heated at 400 ◦C shows slightly increased
article size of about 10 nm while maintaining spherical shape. The sample treated with ultrasonic for 5 h or more at room temperature shows

igh aspect ratio particle shape with an average diameter of 5 nm and a length of 20 nm. According to the results of the electrochemical testing,
s-prepared sample, the sample heated at 400 ◦C for 3 h, and the sample treated with ultrasonic show initial capacities of 270, 310 and 340 mAh g−1,
espectively.

2006 Elsevier B.V. All rights reserved.
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. Introduction

The demand for high energy density, high capacity and high-
ate capability rechargeable batteries has stimulated the search
or new materials [1]. Various systems have been developed
or lithium ion batteries employing graphite as an anode [2–5].
owever, the graphite anode has some disadvantages such as its

nitial loss of capacity, structural deformation and electrical dis-
onnection. For example, when manganese-based cathodes are
ombined with graphite anodes, manganese reacts with elec-
rolyte, LiPF6, and is dissolved to form MnF. This phenomenon
as been proved to cause the degradation of electrochemical
roperties. To circumvent these problems, a various class of
node materials, transition metal oxides (MoO2, SnO2, Ta2O5,

iO, CoO, CuO, FeO and Li4Ti5O12), have been investigated

6–9].

∗ Corresponding author. Tel.: +82 62 530 1703; fax: +82 62 530 1699.
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Among these, titanium oxide has been found to be one of the
ood candidates as an anode for lithium ion batteries with advan-
ages of a high capacity, low cost and non-toxicity. Huang et al.
ave showed a low capacity of 50 mAh g−1 for nano-size TiO2
8]. Natarajan et al. have reported amorphous, nanocrystalline
nd crystalline TiO2 phases obtained by aqueous peroxo route
how a maximum reversible discharge capacity of 140 mAh g−1

10]. M. Hibino et al. have reported amorphous titanium oxide
lectrode for high-rate discharge and charge with a capacity of
20 mA g−1 under a high current density such as 10 A g−1 [11].
hou et al. have reported TiO2 nanotube for anode material with
capacity of 184 mA g−1 in the voltage range of 1–3 V [12].
braham and co-workers have synthesized micrometer-sized
i4Ti5O12 at 800 ◦C using solid-state reaction with a capacity
f 140 mAh g−1 [13,14].

We have investigated the influence of ultrasonic and heat
reatments on nanocrystalline TiO2 and its electrochemical prop-

rties as an anode material in the lithium ion batteries. The
bjective was to obtain a better understanding of the synthe-
is conditions on characteristics of nanocrystalline TiO2 so as to
chieve desirable electrochemical performances.
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. Experiment

A 0.01 M TTIP (titaniumtetraisopropoxide) was added to
thanol of 100 mL. Subsequently, 30% H2O2 was added in
he solution. The molar ratio of H2O2 and Ti(O–iPr)4 was
xed at 12:1. The solution was heated at 80 ◦C for 48 h in a
ound bottom flask attached with refluxing condenser. In order
o remove ethanol and adsorbed organic substances, the solu-
ion containing nanocrystalline precipitates was washed with
00 mL of acetone several times. The particles were filtered
nd dried in an oven at 100 ◦C for 12 h to evaporate impuri-
ies. The obtained particles were heated at 400 ◦C for 3 h. The
ashed solution was treated with ultrasonic for 5 h or more

t room temperature. The obtained particles were separated by
ltering using ceramic membrane funnels. Subsequently, the fil-

ered particles were dried in an oven at 100 ◦C for 12 h. The
amples with or without ultrasonic treatment, and the sample
eat-treated at 400 ◦C were therefore prepared and character-
zed to understand their physical properties and electrochemical
erformances.

The crystalline nature of the obtained nanocrystalline TiO2
as characterized by X-ray diffraction. The particle mor-
hology, size and chemical properties were observed by
eld emission-TEM and FT-IR, respectively. The discharge-
harge cycling of nanocrystalline TiO2 was carried out
ith lithium metal as the reference electrode. Cells were

abricated is based on the following configuration: Li
etal(−)/electrolyte/TiO2(+) with a liquid electrolyte (1 M
iPF6 in EC/DMC) and TAB (Teflonated Acethylene Black)
inder.

. Results and discussion
Fig. 1 shows the XRD patterns (a) of as-prepared sample,
b) the sample heated at 400 ◦C for 3 h, and (c) the sam-
le treated with ultrasonic, respectively. All of the diffrac-

ig. 1. XRD patterns of (a) the as-prepared sample, (b) the sample heated at
00 ◦C for 3 h, and (c) the sample treated with ultrasonic, which are assigned to
natase phase TiO2.

h
s
s
r
c
m

t
t
t
t
w
t
v
a
o
s
F
t
b
r
d
s
T

Sources 163 (2006) 196–200 197

ion peaks in these patterns are assigned to anatase phase
iO2. When the as-prepared sample was heated at 400 ◦C
h, the widths of the XRD peaks became narrower com-
are with as-prepared sample, as shown in Fig. 1(b). The
ample treated with ultrasonic shows that the widths of the
RD peaks even narrower compare with both of as-prepared

ample and the sample heated at 400 ◦C for 3 h, as shown
n Fig. 1(c). It indicates that there was an increase in crys-
alline size with ultrasonic treatment, eventhough the sam-
le was not undergone any high temperature heat treatment.
he primary particle size, d, was calculated from the X-ray

ine width using the Scherrer formula d = 0.9λ/β1/2 cos θ where
is X-ray wavelenth, β1/2 the corrected width of the main

iffraction peak at half-height and θ the diffraction angle.
he d values of the as-prepared sample, the sample heated
t 400 ◦C for 3 h, and the sample treated with ultrasonic was
0, 12 and 15 nm, respectively. The XRD analysis reveals that
he sample heated 400 ◦C for 3 h or the sample treated with
ltrasonic lead to the high crystallinity and increased crys-
alline size. And also, we could say in the XRD analysis that
he high nanocrystalline TiO2 can be obtained at low tem-
erature just by using ultrasonic treatment without any heat
reatments.

Fig. 2 shows field emission-TEM images of the nanocrys-
alline TiO2. The as-prepared sample shows aggregated
anocrystalline TiO2 particles. The size of primary particles is
bout 5 nm. The sample heated at 400 ◦C for 3 h shows increased
rimary particle size of 10 nm. These results indicate that crys-
alline size of the obtained TiO2 increased from 5 to 10 nm as the
eating temperature increased from 100 to 400 ◦C. The sample
reated with ultrasonic shows high aspect ratio particle shape

orphology with an average diameter of 5 nm and a length
f 20 nm. It gives three times higher intensity than the sample
eated at 400 ◦C for 3 h in XRD analysis. It indicates that the
ample treated with ultrasonic has a high crystallinity than the
ample heated at 400 ◦C for 3 h. The XRD and TEM analysis
eveals that this ultrasonic treatment will be an effective pro-
ess to improve the crystallinities of nanoparticles in solution
edia.
Fig. 3 shows the FT-IR spectra of as-prepared sample,

he sample heat-treated at 400 ◦C for 3 h, and the sample
reated with ultrasonic. The absorption spectrum from 3000
o 3600 cm−1 in Fig. 3 are assigned to the stretching vibra-
ion of the hydrogen-bonded OH groups of the adsorbed water,
hile the spectrum in 1600 and 1380 cm−1 can be assigned

o the bending vibration of absorbed H2O and the stretching
ibration of CO3

2− ion, respectively. This may be due to the
bsorbed species on sample surface. For the reason, we can
bserve relatively stronger spectrum from the smaller particle-
ized samples. The absorption region at 912 and 717 cm−1 in
ig. 3 can be, respectively, assigned to the stretching vibra-

ion of the O–O bond and the Ti–O bond in the Ti–O–O–H
ond of the peroxo titanic acid Ti(OH)3(OOH). The above

esults indicate that the Ti-peroxy compounds as impurity
o not exist in samples. Therefore, we reached a conclu-
ion the samples are consist of pure nanocrystalline anatase
iO2.
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Fig. 2. Field emission transmission-electron microscopy (FE-TEM) images of (a) the as-prepared sample, (b) the sample heated at 400 ◦C for 3 h, and (c) the sample
w
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Fig. 4 shows the initial discharge profiles at various (0.05,
.1, 0.2 and 0.4 mA cm−2) current densities in the voltage range
f 2.5–0.5 V. Fig. 4 (a), as-prepared sample, shows a contin-
ous sloping discharge profile, since it consists of very fine
anoparticles with short range ordering. The as-prepared sam-
le shows a poor rate capability at various (0.05, 0.1, 0.2 and
.4 mA cm−2) current densities, although it gives a good initial
apacity of 270 mAh g−1 at the 0.05 mA cm−2 current den-
ity. The sample heated at 400 ◦C for 3 h in Fig. 4(b) shows
plateau in the voltage range of 1.5–1.7 V, due to its rel-
tively long range ordering compared with the as-prepared
ample with initial capacity of 305 mAh g−1 at current den-
ity 0.05 mA cm−2. Initial capacities are 305, 204, 175 and

t
l
o
(

68 mAh g−1 at various current densities of 0.05, 0.1, 0.2 and
.4 mA cm−2, respectively. It exhibits a better rate capability
han the as-prepared sample. The sample treated with ultra-
onic in Fig. 4(c) shows that plateau pre-eminently in the volt-
ge of about 1.7 V with initial capacity of 340 mAh g−1 at
urrent density 0.05 mA cm−2. Initial capacities are 340, 328,
58 and 121 mAh g−1 at current densities of 0.05, 0.1, 0.2
nd 0.4 mA cm−2. Although this sample treated with ultrasonic
hows a larger initial capacity, the rate capability is worse than

he sample heated at 400 ◦C for 3 h. These results suggest, at
east partially, that the spherical particle morphology with size
f around 10 nm could help to attain a better rate capability
Fig. 5).
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Fig. 3. The FT-IR spectra of (a) the as-prepared sample, (b) the sample heated
a ◦ −2

F
d

t 400 C for 3 h, and (c) the sample treated with ultrasonic. Fig. 5. Cyclabilities of the samples at various current densities of 0.05 mA cm
during the 1st–3rd cycles, 0.1 mA cm−2 during the 4th–6th cycles, 0.2 mA cm−2

during the 7th–9th cycles, and 0.4 mA cm−2 during the 10th–20th cycles.

ig. 4. The initial discharge profiles of (a) as-prepared sample, (b) the sample heated at 400 ◦C for 3 h, and (c) the sample with ultrasonic treatment at various current
ensities.
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. Conclusion

Nanocrystalline TiO2 samples were prepared from the
thanol solution of titanium isopropoxide (Ti(O–iPr)4) and
2O2 at 80 ◦C for 48 h by refluxing method. We have inves-

igated effect of heating and ultrasonic treatments. These treat-
ents affected the electrochemical properties and morphology.
ll samples of the X-ray diffraction peaks are assigned to anatase
hase TiO2. The sample heated at 400 ◦C for 3 h shows the
verage crystalline size of 10 nm. Nanocrystalline TiO2 pre-
ared by treating with ultrasonic has monodispersed high aspect
atio particle shape morphology of a diameter of 5 nm and a
ength of 20 nm, when comparing with other samples. The sam-
le treated with ultrasonic shows a good initial capacity with
40 mAh g−1 at current density 0.05 mA cm−2 in the voltage
ange of 2.5–0.5 V. However, its rate capability was worse than
he sample heated at 400 ◦C for 3 h, indicating that a smaller
article size with spherical morphology provides a better rate
apability. Further studies are needed on the optimization of
rocessing conditions and are being carried out for high energy
nd high power applications.
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